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Let A be the class of analytic functions in the unit disc with the
normalization f(0)=/"(0) — 1 =0. This article analyses various necessary
and sufficient coefficient conditions for functions f'€ A of the form

z
= l4bz+ b+
/(@)

to be univalent. We present an interesting class of univalent functions
associated with the zeta function and also pose an open problem.

Keywords: coefficient inequality; analytic, Hadamard convolution;
univalent and starlike functions; zeta function
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1. Introduction and main results

Let A denote the collection of all analytic functions fon the unit disc D ={z : |z| <1}

of the complex plane C normalized by the conditions f(0)=0=/"(0) — 1, and let
S={feA: fis one-to-one in D}.

For fe A and f(z) #0 for 0<|z| <1, consider

o 24 ...
ol l+biz+byz"+---. (1)
Obviously, such a representation is valid for functions f€S. A wellknown area
theorem [1, Theorem 11 on p. 193 of Vol. 2] shows that if f'€ S has the form (1), then

> (= Dib* < 1. )
n=2
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It is natural to ask whether (2) is sufficient for univalence of the corresponding f.
In Theorem 1.3, we show that the condition (2) is actually not sufficient for
univalence and so, the radius of univalence is obtained for f satisfying the
condition (2). For our investigation, we introduce the class ¢/ of all functions fe A
satisfying the condition

2
U <1 Up(2) f(z)<f()> —1, forzeD.

Functions in ¢/ are known to be univalent in D, see [2,3]. We refer to [4] for other
related studies concerning the class ¢/. Now, we present a sufficient condition for
univalence in terms of the coefficients b,, of the function f.

Tueorem 1.1 Let fe A and have the form (1). If f satisfies the condition

> (= Dlbs <1, 3)
n=2

then feU. The constant 1 is the best possible in the sense that it cannot be replaced by a
larger number.

Proof  The condition (3) implying fel is well-known [5,6] and so, it remains to
prove the sharpness. Indeed, from the representation of f and the coefficient
condition (3), it follows that

|uf(z)|:‘_z(%> o ‘ ’Z(n—l)bz"<2<n—1)|bn|<1

which implies that fe /. The proof of the first part follows.
In order to prove the second part, it suffices to show that there exist an £>0 and /'
of the form (1) such that

D (= Dlbyl =1+e,
n=2

but /¢ S. Now, let f(z) =z — az*, where a = IJMI/JEL with e>0. Then e €(1/2, 1) and

z 1 >

R B

where b, =a". Thus,

o0 o0 . a B
;(n—l)bn:n;(n—l)a — ot

On the other hand, f’(z)=1—2az and therefore, f'(xo)=0 at xg :2%[ e(1/2,1)
showing that f is not univalent in the unit disc . Thus, the constant 1 in the
coefficient inequality (3) is the best possible. |
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The coefficient condition (3) is only sufficient for f to be in the class ¢/, but is not
a necessary condition. For instance, consider the function f given by

1 5 1
i:l—}— 22+£zz +-z*

7@ 3776 T
We note that
NATEE N 1 V5o
> 1= lzP|l+ iz + 5 - (1+X 42
’f(z) |z tizhyr| 2 3<+2+3>>0

and so, z/f(z) is non-vanishing in the unit disc . Also,
1 1
U )l =3 ‘—22(1 +/5iz + zz)( = 3 IP1z + /54 3)/21 2+ i/5 = 3)/2.
Next, if ¥(z) = 1 4+ +/5iz + z* then v is univalent in ID with ¥(0)=1, and

mlax|1p(z)|_ max 12 cos 6 + +/53i| = n(}ax Védcos?O+5=3.

This observation shows that [U/,(z)| <1 for zeD. On the other hand,

e 1 5 1
Z( 1)|bﬂ|_ +§+§ 1

n=2

and the claim is proved.

Similar to the condition (2) for /'€ S, one has the following necessary condition
for feU. This result has apparently appeared in [7] for a different context, but for the
sake of completeness and a comparison in the sequel, we include the proof here as it
is straightforward.

TurorREM 1.2 Let fel have the form (1). Then Y22, (n — 1)*|b,|* < 1.
Proof  The power series representation of f yields

i(n — )b,"

n=2

Us ()] = <1, zeD.

Letting z=re" for re(0,1) and 0 <6 <2, the last inequality gives

00 1 2| 00 2
> 01— 2k, = o / o<1,
n=2 27[ 0
The desired inequality now follows by letting r — 17. [ |

THeEOREM 1.3 Let fe A and has the form (1). If f satisfies the condition (2), then f is
univalent in the disc |z| < ry = \/—, and the radius is the best possible.

Proof Consider the function g defined by g(z) =r~'f(rz), where 0<r < 1. Then

——1+Zb;” g

g(2)
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The Cauchy—Schwarz inequality yields

i(n — Dibylr" < (i(n - 1)|bn|2>z(i(n - l)rz”)z
n=2 n=2

n=2

2

1
00 2
Y- ) =,
o 1—r

and since r*/(1 —r¥)<1for0 <r<ry= f’ it follows from Theorem 1.1 that gel/

IA

(and hence univalent) in . This means that fis univalent in the disc |z| <ry.
In order to prove that the radius of the disc is best possible, consider the function

s

fo2) =z —roZ%, 1o =

For this function,

z J_n
j% 1—102 Zr

and therefore, with b, = rj,

S - Db =3 - 1)( )

n=2 n=2

On the other hand, Ref;(z) = Re(l — V22) >0 for |z| <rg = f’ and f;(ro) =0
showing that £ is not univalent in any larger disc. |

THEOREM 1.4 Let f€ A and has the form (1). If f satisfies the condition

o0

Y =1 bl <1,

n=2

then the function g, defined by g(z)=r""f(rz), belongs to U for 0 <r<ry=

,/@ = 0.78615. In particular, f is univalent in the disc |z| <ry and the result is best
possible.

Proof As g has the form

zZ
T *Zb’

it follows that

% ,.2
Z(n = Dlbalr" (;(l’l - 1) 2 ) (nZ; ) \/1“7_75

which is less than or equal to 1 if P —1< 0,ie.iff0<r<ry= @ This gives
the desired conclusion.
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To prove sharpness, consider the function f, defined by

o0 n

z r
=1 02" =1 —rozlog(l — roz).
e +n2:2:n_ 17 rozlog(1 — roz)

It is easy to see that Re(z/fo(z))>0 for ze D showing that fy(z) A0 for 0<|z|<1.
Now,

S = 1Pk = Y= 12
n— W= (n— —_0 _
n=2 n=2 (l’l - 1)2 - r(2)

On the other hand, for |z|<rg, we see that

2 2.2 4
z —rsz r
RN / —1 = 0 0 =
Kﬂ@)ﬁg) o i
while for ro<z=r<1:
2 2.2
z , oy
‘@wﬂﬁ@ Vo=

It follows that go defined by go(z) =~ 'fo(rz) belongs to U. That is, [U/(z)| < 1 holds in
the disc |z| <rg, but not in a larger one. Since

1 —roz —r2z?
f()/(z) = 2 B
(1 —=roz)(1 — rozlog(l — ryz))
and f;(ro) = 0, then fj is not univalent in a larger disc than |z| <r. |

The above results can be extended to many general situations (see [8] and the
references therein). For example to the class ¢(1) of all functions f'€ A in D satisfying
the condition

lUp(z)| <& for zeD,

and for some A €(0, 1]. As (L) CU C S, functions in U(1) are univalent in . The
restriction on A implies that functions in /(i) are starlike in [D. Here a function f€ A
is starlike (with respect to 0), denoted by fe S*, if tw € f(ID) whenever w € f (D) and
t €[0, 1]. The analytic conditions for starlikeness of f€ S can be written in the form

zf'(z)
Re(f(z) ) >0, zel.

It is worth pointing out that functions in the collection

r z z z z
=1z
’ (lj:z)z’ 1+z° 14227 1+z+422

are contained in U/ NS*, and each function plays an important role in function
theory, especially when considering the corresponding families £, of close-to-convex
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functions f satisfying the condition

Re(zg é?) >0, zeD

with g € L. To state our next result, let us recall the following result:

THEOREM A [8]  Any function f(z) :=z+ Y oo, an(f)z" € A satisfying

—lax(/) + V2 — lax ()
2

U (2)| < .l <1,

belongs to 8*. Moreover, there exists a non-starlike function f in U such that

0~ “leNl+v2- la>(f)I?
2

< sup |Us(2)| < 1 — |aa(f)I.

lz] <1

We remark that although U C S, functions in S are not necessarily in /. Thus, it is
natural to consider some subsets of S which are included in /. Our next result fulfils
this aim.

THEOREM 1.5 Let f€ A satisfy the condition

G
/)

1%& -eD. @)

Jfor some 0<A <1. Then

M) I5-1< e* — 1, zeD. (Note that ¢* — 1 <1 whenever 0<x <log?2.)

() feu), ¥ =(1+re* —1.
(3) (Note that X' <1 whenever 0 <A <X1o~0.374823, where Lq is the root of the
equation (1 +1)e*=2.)

In particular, if fe A and 0<t <1y~ 0.374823, then the following implications holds:
zf'(2)
/)

Proof Set p(z)=f(z)/z. Then p is analytic in D, p(0)=1 and so, condition (4) is
equivalent to

1‘ <l = fel.

@) ')
FERIE

where < denotes subordination and p(z) is non-vanishing in . We can write

1 <Az, zeD,

zp'(z)
p(2)

=AW(z), zeD,

where W is analytic in @, W(0)=0, and |W(z)| <1 for z € D. Therefore,

) [T
/()P(S) ds—k/O . ds, zel,
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from which we obtain

de

log p(2) — /01 W(th)

so that p(z) =exp(Aw(z))), where

1 A
a)(z):/o W(t’ ) d

and o is clearly analytic in D, w(0) =0, and |w(z)| <1 for z € D. Therefore,

1z
20~ F = o), zeD.

Also,

m— 1‘ <exp(Alo(z)]) — 1 <exp(Alz]) — 1 < exp(r) — 1

and the desired conclusion in part (1) follows.
For the proof of part (2), it suffices to observe that

2 .
17 76
”Kﬂ» ﬂ@@@ 0+ﬂ@ 4
[ ' S0
<o lme e
<(14+1E =) +r=0+1re" —1,

and the desired conclusion follows. [ |

THeOREM 1.6 Let (o) =Y o2 n?, ¢p(0) =2¢(20) — {(20 — 1) and
1
(O’) 240‘+1 +§(20’+ 1) W.

Assume that o is such that ¢(oo) >0, and C = C(oy) >0 satisfies the condition

(200—1 _ 1)2 _ 3—200

Y(op) < C and C< pEET=Y . ®)

Let f€ S and define F, by
z z  Lis(2)
= — % N
Fo(z) fa) =z

where Liy(z) =Y o o " and x denotes the usual convolution| Hadamard product of two
convergent power series. Then F, €U for o> oy.

Proof Let f€S and set

f() =14+biz+b2+- (6)
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so that z/F,(z) takes the form

F, (z) Z (n + 1)
The well-known area theorem [1, Theorem 11 on p. 193 of Vol. 2] gives
D (= Dlb) <1, (7)
n=2

and, the Cauchy—Schwarz inequality yields

1 1

= bl N[ n-1 Y

n;(n 1) +1>"—<;( 1)|bn|)(;—(n+l)%). (8)
Now,

o0 }’1—1 o0 o0

”Z;(n+l)2”_;(n+l)z” ! 22:n+1)

1 1
:C(zﬁ—l)—l—zzol—2({(20)—1—220)

=1—¢(0). )

By hypothesis, ¢(o)> ¢p(0g) >0 for o >0, Consequently, using (7) and (9), (8)
implies that

|Da]
n—1) ~<1 foro > oy.
,; (n+1)
It is worth pointing out that for the quantity Uy, (z) to be well-defined, we need to
show that & 57 0 in . Thus, by Theorem 1.1 and the last coefficient inequality,
F,eUif i ;é 0 for every z € D. In order to verify the non-vanishing condition, we

Fy(2) -
use the representation of - and obtain

F(?)
bl |2]" |bil  |bal
Z(n+1) _T___Z(nﬂ) (10)

Clearly it suffices to show that F—(Z) # 0 only for 0 = 0. In view of this observation,
we first observe that

1Bl 1
n;(”"' 1)0'0 = (Z(}’l 1)|b | > (Z( _ 1)(n+ 1)200)

n=3

1
1 e 1 ’
2
<\/1— by (2 ot Z;—(n - 1)2ao+1>

1 1
= 1 — |b2|2\/240‘ +1 + §(20'() + 1) 220‘()+1
= /1= 1h2*yV¥(00)

<JC/1 = b2,

F, (z)

ol—
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where the last inequality is a consequence of the first condition in (5). Since

|by]=1—/"(0)/2] <2 for each f€ S, it follows from (10) that
z 1 16> 2

—— >l ——=——=——/C(1 — |ba]).

E] RO TR TR A

Moreover, (7) implies that |b>| < 1. Let

g =4 C(I ) for0<x<l.

3
It is a simple exercise to see that g has its maximum value of
V14 320C
g(xo) = T 3
at the point xg = 1/+/1 + 3220C. In view of this observation
z 1 1 +3%20C
— | >1-= _
Fy(2) 200-1 30

which is non-negative whenever C and o, are related by the second condition in (5).
Finally, the condition ek 0 holds in D under the hypothesis. Thus, F, belongs to
%0

U for all o >0y, and this completes the proof. |

If €S has the form (6) with »; =0, then the range of o can be extended.
However, we can quickly obtain the following corollary.

CoroLLARY 1.7 Let f€S and define F, by
z z  Lig(2)
F(o) 70" 2
where Liy(z) = Y | :TZ Then for 0 >3/2, F,elU, and hence F, is univalent in D.

Proof Set 0yg=23/2 in Theorem 1.6. Then, ¢(3)~ 1.20206, and

2
$(3/2) = 2¢(3) — £(2) = 2¢(3) — % ~ 0.75918,

135 7 135
¥(3/2) =¢(4) — 8 =90 18~ 0.0276357.
With C=(3/2), we find that
_ L VIH2TC 0385848,
V2 3x/3

and thus, all the required conditions of Theorem 1.6 are satisfied with 6p=3/2. B
We conclude this article with an open problem.

Problem Determine the smallest value of o so that F, is either in ¢/ or in S.
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